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Statistical Inference for Bounds of Random Variables

by Peter Cooke
Statistics Department,

University of New South Wales, Sydney.

Summary

Robson and Whitlock (1964) considered point estimation and con-
fidence limits for the upper bound of a random variable when the bound
was known to be a truncation point. However, their approach to the
point estimation problem failed to produce an estimator with smaller
mean squared error than the largest order statistic from a random sample.
In this paper we will construct point estimators of the bounds of random
_ variables which are substantially better estimators than the extreme
order statistics for many classes of random variables, including those
whose distributions are truncated at one or both ends. We will also
construct confidence limits and tests of hypotheses for bounds. The

main results are large sample results.

i . Introduction

Suppose Xl’ X Xn are independent random variables, each

g2

with absolutely continuous cumulative distribution function F(x),
where F(x) € (0,1) only for x€(¢,6). The interval ($,0) is
gometimes referred to as the support of the distribution function F ;

see, for example, Feller (1966). Let Y1 < Y2 < .0 < Yn be the

order statistics based on Xl’ X ,...,Xn 5 We will construct a point

2

estimator of 6 when © is known to be finite and ¢ _ is unknown.

Of course the result which follow also apply when ¢ is known and,



in particular, when ¢ = - oo, the only assumption required then

being that

)
f xzdF(x) <o,

We will also construct confidence limits for 6 and large sample
tests of hypotheses about 6 . No results for lower bounds will be

proved since these can easily be derived from the upper board results.
208 Point Estimation of 0.

With no information about the form of F and, in particular,
with no information about the shape of the upper tail.of f(x) = F'(x),
the statistic chosen to estimate © seems likely to be Yn . In
an attempt to improve on the estimator Yn in the sense of reducing
its mean squared error when O was known to be a truncation point

of the upper tail of f(x), Robson and Whitlock (1964) applied a

modification of Quenoulli's (1956) bias reduction technique to Y_ .

n
This led to the family of estimators

k .

(k) _ igk+l _
=) DY) Y, k=120,

i=0
where removal of the leading bias term gave Tél) 5 removal of the
next term gave Tiz) and so on. However, it was found that Til)

had the same asymptotic mean squared error as Yn s while the mean

(k)

squared error of Tn increased with k. The author has been

able to show that for the other types of upper bound considered in

(k)

this paper the mean squared error of Tn
(D
n

also increases with Kk,
but that has smaller asymptotic mean squared error than Yn .

Thus we will compare the mean squared error of the estimator derived

here with that of

T(l) = Y + (¢ -Y
n . n n



The term Yn - Yn—l attempts to correct the bias in Yn and of

course does so in a sensible way since Yn underestimates © and

Yn - Yn—l is nonnegative with probability one .
The random variable Yn has distribution function Fn(y)
and mean
) n ) n
EQX) = [ydF'(y») = 8- [F (ndy, ¢))
¢ ¢

on integrating by parts. Thus we can write

6
6 = E(¥)+ f¢ F(y)dy

and this suggests the estimator
Y
n
Y+ [ F(ydy
’ Y
R 1
where F(y) is the empirical distribution function based on the

order statistics Yl’ Yz,...,Y H that is,

n
0 R y <Y,
e i .
F(y) = o > Vi 2y <Y i=1,2,0 0001 (2)
> .
1 , y 2 Yn
Now
Y : n-1 . n :
[ ey = ] (;11—) Vg — Yy)
i=1

- B EN ey T Y -0y

and so the suggested estimator is

ncl iy ity
IR ((BE I (R T
i=0
However, since we will only investigate the case in which n is

large, we will consider the estimator



n-1

~ -1 -i
6, = 2¢ - U-e) ) ey . (3)
i=0
and compare its performance with that of Tél) . The asymptotic
efficiency of Tél) relative to 6n will be defined to be

56 _-0)2
1im -——ll————i .
0> ED-0)

When estimating ¢ , the equation

]
E(Yl) =¢ + f [l-F(y)]ndy
¢

suggests the estimator

Yn A n o i-1 n i n
n- [t -ReF ey - JH0-5) -0 -2y
1

and so, for large n, we will consider the estimator
n

$n = 2Y1 - (e-1) z e-iYi .

i=1

It should be noted at .this stage that although we will only
investigate properties of estimators based on continuous random
variables, in thé case of discrete variables, arguments like those
above lead to similar estimators to 6n and $n 8 For example,
suppose a random variable with distribution function F can take
only the integer values ¢ < ¢ + 1< ... <6 with positive proba-
bility. As above, suppose Yl’ Y2"“’Yn are the ordef statistics
based on-a random sample of size n from F . Then

6 :
E(Y) = ¢F (@) + ) y{F'G) - Fi(y-1)} = 6+1 - | F(y)
y=¢+1 y=¢

and so the suggested estimator of 6 is
Y
n.
Y -1+ )F (y) .
n
y=Y 1



Now Y

-1 . n
i
ZF (y) =1+ Z @ @y, - )
y—Yl i=1
since the left hand side has Yi+l = Yi terms equal to

. 1 PN
(%) s, 1=1,2,...,n~1 and Fn(Yn) =1, Thus the estimator of

© is exactly as in the continuous case.

3. Asymptotic Efficiency

According to Gnedenko (1943), when © is finite there are
only two possible nondegenerate limiting distributions of normalized

values of Yn . In this paper we will only derive results for the

case

n O-y 1/v

F (y) ~ exp {— (e-u ) } as n>re

= .
for which the necessary and sufficient condition is that for c >0,
lim i:§§c+;§) = cllv

y *> 0- e/

where u 1(1 -=] .
n
In this section we will discuss the asymptotic efficiency of

Tél) relative to én when F satisfies the above condition.

First we require expressions for means, variances and covariances
of order statistics. The following expressions are not difficult

to obtain:

l '. ) A
E(Yn—i) = n(n;l) ,{0 F-l(X)Xn—l-l(l—X)ldX, 0 f i< n-1, (4)
By [Ty g p)=oa- DG J_2>f F () 1T (- 137 ax, 0¢g<icn-1.

(5)
1if

F(y)~exp{-{e_u) SR



-1
then F (x) ~ 0 - (G-un)(-log Xn)v as n > and, using (4),
we find that for i small

T (v+i+l)

T(1+1) @ n7® (6)

E(Y ) ~ 6 - (6-u)

and, from (5), when i 4is small and 1> 3j >0,

(6-u ) 1/v Vo, iejel
E(ani|Yn-j=y)~ 6- T3y ) f { + 9 e " 2z dz as n + .
()
It is convenient to write
Cov (¥, ;»¥, ) = E(Yn?iee){Yn?j—E(Yn_j)}
nel. o0 n-j-1, .. 3
= (5 f¢ {y-E(Yn_j)}E(Yn_i—e|Yn_j=y)F M U-F(y»} aF )
from which, using (6) and (7), we obtain
(6-u ) .
Tl g v IO gy -t -z_i-j-1
Cov(¥ _; Yn— )~ TGADT =) f {£779- TG te” f (z+t) e %z
as n > @ and finally, for i > j > 0 and i small,
2 Tuti+D) gT(2v+i+l)  T(vtitl) ‘ o
Cov(Y,_;»Y, ) ~ (0-w)” vy Ity —T@n 1 % e ®

Similar calculations to those above give

(2v+itl) I‘ (v+1+1) }

TitD) T2 141y ne )

2 (T
Var(Y ;) ~ (8-u)” {

for i >0 and i small. Thus (8) also holds for i = j

From (6), (8) and (9) we now have

2 (2v2-v+1)

-2 1)
(_e-un) E(Tn - e) (\H'].)

T(2v+l) as n*+x (10)

We will now find an expression for E(@n-e)2 . From (3)

and (6) we obtain

©-u) E@ -) ~ {(1-eH ™2} T(w#) as n o | an

dzdt



and, using (3), (8), (9) and (11),

(6—un)—2E(§n—6)2«~4F(2v+1)+4F2(v+1)(1—e_1)_v+F(2v+1)(1—e—1)2(1—e_2)_2v—1

2 -1,-2v -1, ¢ _-i T(2vHitl
- TE(+HL) (1-e” )TV -aT(uH) (1-e7 ) Y e PEvXIil))
i=0
T _1)2 E o1 D(2v+i+1) iil -3 TOobi+l) > (12)
= L T(uHitl) TGHD =" )
i=1 j=0
Thus the asymptotic efficiency of T;l) relative to 6'

n

is given by

E(én-e)2
new) = lim —B_ -
0> E(Til)-e)2

which equals the ratio of the expressions on the right hand sides of
(12) and (11). Some values of n(V) are given to three significant

figures in Table 1.

Table 1: Values of the asymptotic efficiency of Tél)

A
relative to Gn .

v | 1/5 1/4 - 1/3 1/2 1
n) | 1.16 1.17 1.17 1.08 .666

The value v =1 corresponds to densities £(x) which are
truncated at © ; that is, 0 < £(8) <> . Thus en provides

a solution to the problem of Robson and Whitlock, though it is

slightly inferior to Til) for values of v other than v =1 .

A
However, in the next section we will improve on Gn to produce

an estimator with smaller asymptotic mean squared error than an

(1)

n

improved T for all values of v considered in Table 1. The
value Vv =% corresponds to densities f(x) with £(0) equal to

zero or infinity, but with £'(8) nonzero and finite and, in



' 1 . . Herrr
general, V = ——= corresponds to a density which is zero or infinite

k+1
at 8 and whose first finite, nonzero derivative at 0 is its
t S 5 ; : 3
k N derivative. The derivatives mentioned here are of course all

left derivatives at 0 .

4. Improving on @n :

Suppose now that the value of AY corresponding to the upper
tail of the density £ is known, though the form of the function
is unknown. This situation seems likely to occur in .practical
problems, since for example one might know that he is sampling from a
distribution which is truncated at © , so v=1. In this case
it does not seem to be possible in general, by considering a function
of Yn alone, to improve on the estimator Yn either in the
sense of reducing the order of magnitude of its bias or of reducing
its mean squared error. For example, if we consider estimators

proportional to Yn 5 then the constant of proportionality which

minimizes the mean squared error of the 'estimator' is

c(@) = 1 + r(a+1)e'l(e-un) + e‘z'ot(e-un)zj

which is a function of 6 .

On the other hand, the estimator

=(1) -1 _
T o=y AV Y )
has bias of order of magnitude (B—un)2 compared with order 6—un
€)) . . :
for Tn . Using (6) and (8) we easily find

(e—un)—zE(Til)—B)z ~T(2v+l) as n >

and

(e-un)‘ZE(Y.n-e)2 ~T(2W1) as n-+®

8



(1)

so that bias reduction in Tn is achieved at the expense of

increased asymptotic mean squared error except for Vv =1 where

there is no change. The estimator
n-1
= -1,-v,-1 -1 -i
Gn = Yn + {1-(1-e ) "} {Yn—(l-e )izoe Yn—

}

i

also has bias of order of'magnitude (G-un)2 compared with order

6-u for O_ . Some values of
n n
E(én-e)2
n,v = 1lim ——<——
1 n -+ o E(T(Hg)?2
. n
the asymptotic efficiency of %él) relative to Gn s are given
to three significant figures in Table 2.
Table 2: Values of the asymptotic efficiency of Eél) relative to Gn.
v ] 1/5 1/4 173 1/2 1
nl(v) l .680 .683 .689 . 700 .731

However, our main aim is to construct estimators with mean squared
error as small as possible. When Vv  is known, the estimator of 6

of the form

=(1)
T, )

- Yn + Cl(v)(Yn_Yn—l

with smallest mean squared error is the one for which cl(v) = 1/2v

and, for this choice of cl(v), we can show that

-2 _—(1) T'(2v+2)
(G—un) E(Tn N et

2
=0)" ~ 2 (1+v)

n > o .

The estimator of the form

@|

-1 n-1 -1
= ¥+, {Y - (l-e )izoe AP

with smallest mean squared error is the one for which CZ(V)=a1(v)/a2(v),

where



1 z e-i ['(2v+i+1)

al v) = 1"(\)+1)(1—e- ) N 'I-r(—\-)q_m-s— - T (2v+1)

and

-i T(2v+itl)

a,(v) = r(2v+1){1+(1-e'1)2(1-e'2)'2“'1}-2r(v+1)(1—e‘1)i§0e T

+2(1~e H2% Ve

i=1

-1 T(2v+i+1) iil —3 T(uHj+l)
FOHD) . L% TC3D)

The asymptotic efficiency of Eﬁl) relative to 6; for the
above choices of cl(v) and cz(v) is given by

Edi;e)z
le(\)) = 1lim —T(_l)__-e—)_z .

n->® E(Tn

Some values of nz(v) are given to three significant figures in

Table 3.

Table 3: Values of cz(v) and the asymptotic efficiency of

'E(l) relative to [
n n
v 1/5 1/4 1/3 1/2 1
cz(v) 6.42 5.11 3.80 2.49 1.18
nz(v) .819 .824 .831 844 877

For practical purposes the simplicity of the estimators

(1)

makes them attractive. Tn

(D
n

could be used when Vv is

and E(l)
n

R _
unknown, though Gn is a much better estimator if © happens to

be a truncation point. ‘Eél) could be used when v is known

since even though it is always inefficient relative to Gn , its
efficiency doesn't drop below 81% for the values of Vv

considered here.

10



5. Confidence Limits For 6 .

If

o /v
Fn(y) ~ exp{—( -g—_%—) ]— as n > o,
n

then

e—Yn 1/v
lim P( < x) =1 - exp(—x ) for x>0

and it is not difficult to prove that © - Tél))/(e-un) also has
a non-degenerate liﬁiting distribution which is not a function of

8 . This leads us to consider (O-Yn»KG—T;l)), or equivalently,

(G-Yn)/(Yn-Yn_l) as the basis for constructing confidence limits

for 6 .
When
n Y 1/v
F(y) ~ exp{ - (§:E“ } as n*®
n
we find
6 -Y, - 1/v
1im P[?T“ SX] - [m] , 0<x<ew (13)
n > o« n n-1

and hence, whatever the values of 9,9 or any other parameters

of the distribution F ,

. O\-V ;-1 O\-v ,q-1 _
nlimm PLY HG =11 H{y ~¥ 3oy H(1- Ty -Y (=1,

' -v_;1-1 -
nlimw PO >Y + {o -1} {y -v ,}1=l-

and

. -v -1 _
lim P[6 < Yn + {(1-a) “-1} {Yn-Yn_ 1 =1-0a .

n >

1

11



When © is a truncation point Vv =1 and the upper bound
for © in the last statement equals Yn + (u_l-l)(Yn—Yn_l),
which is Robson and Whitlock's approximate upper confidence bound

for 6 .

6. Large Sample Tests of Hypotheses About 0 .

Consider the hypotheses Hj : 6 = 60 and H, : 6 = Gi(< 60)

: — : , 3 mv-l
and the test with rejection region for HO.(GO—Yn)/(Yn Yn_l)Z{(l a) -1} .

If we denote the power function of this test by ,en(e) and, if

n 6-y /v
F (y) ~ exp{ - (e—u } 1 as n+e,
n

from (13) we have 1im en(eo) =q , whatever the values of ¢
n > o

or any other parameters of the distribution F . Thus, when n
is large the test will have size approximately equal to o . Also, we

find the following asymptotic expressions for Bn(e) :

) 1/v(1-1/v)
%50 ol/v-1

B_(8) ~ 1-(1-u'>{(1_a)‘\’-1}1/“(1'1/\’>( — T (/).
n

0,.-6
exp[—{(l-u)_v—l}{gga— }l/v ] as n*>® for 6 < 90 , (14)
n

A 6-6,)1/v
en(e)~uexp{-(e_-un)- } as n->® for 8>8;. (15)

These expressions are not necessarily good representations of

Bn(e) for © npear 6 except when Vv =1 . However,

0 H

for 6 not near 60 and n large, |(60—6)/(6—un)| will
be large, so that both expressions are decreasing functions of

(6—60)/(6—un). Thus, if (6—60)/(e—un) is an increasing function

12



of 6, the above test is a test of H. L :86>986

versus
0 - 0

H, : 6<8 with size approximately o and power function a

1° 0

decreasing function of ©6 when n 1is large.

.08 = : 0 =06.(>6), i
For a test of Ho : 6 60 versus H1 : 0 81( 60), if

v -1
. . . _ _ < _
we use the rejection region for Ho 3 (60 Yn)/(Yn Yn—l) < (o 1)

*
and denote the power function by sn(e), using (13) we find

*
lim B (60) = 0 whatever the values of the parameters of F
n > ©

other than 6. We find the following asymptotic expressions
" *

or 3n(e) :

80—6

6-u
n

T(/v) .

B:(e) 5 a(a-v_l)l/vxl-l/v){ )1/v11-1/v)v1/v,1

—v 60—6 1/v
exp -{(a -1) } as mn>o for 0 < 90, (16)

6-u
n

" 6—80 1/v
Bn(8)~ 1 - (1-a) exp[ - { 9—un } ] as n + o for 6 > 90 . (17)

As in the previous case, except whem Vv =1, the
expressions in (16) and (17) are not necessarily good representations
of the power function when 6 is near 60 . Also, if
(8—80)/(8—un) is an increasing function of 6 , the test is
atestof H 6 :6<6 versus H, : 6 > 6 with size approximately

0 1

0. and power function increasing in © when n 1s large.
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